Reconstruction of conjunctival epithelium-like tissue using a temperature-responsive culture dish
نویسندگان
چکیده
PURPOSE To study the feasibility of engineering conjunctival epithelial cell sheets on a temperature-responsive culture dish for ocular surface reconstruction. METHODS Rabbit conjunctival epithelial cells (rCjECs) were cultured in DMEM/F-12 (1:1) medium. The morphology and phenotype of the rCjECs were confirmed with phalloidin staining, periodic acid-Schiff (PAS) staining, and immunocytochemistry. The rCjECs cultured on a temperature-responsive culture dish for 10 days produced confluent conjunctival epithelial cell sheets. Then, the phenotype, structure, and function of the conjunctival epithelial cell sheets were examined. RESULTS The conjunctival epithelial cells were compact, uniform, and cobblestone shape. All cultured conjunctival epithelial cells were harvested as intact cell sheets by reducing the culture temperature to 20 °C. Conjunctival epithelial cells were stratified in four to five cell layers similar to the conjunctival epithelium. CCK-8 analysis, 5-bromo-2'-deoxyuridine (BrdU) staining, and the live and dead viability assay confirmed that viable proliferation cells were retained in the cell sheets. Immunohistochemistry for CK4, CK19, and MUC5AC showed the cell sheets still maintained characteristics of the conjunctival epithelium. CONCLUSIONS A temperature-responsive culture dish enables fabrication of viable conjunctival epithelial cell sheets with goblet cells and proliferative cells. Conjunctival epithelial cell sheets will be promising for reconstruction of the conjunctival epithelium.
منابع مشابه
Conjunctiva reconstruction by induced differentiation of human amniotic epithelial cells.
In this study, we aimed to investigate the feasibility of directed differentiation of human amniotic epithelial cells into conjunctival epithelium under specific conditions as well as of constructing tissue-engineered conjunctiva for ocular surface reconstruction. Human amniotic epithelial cells were cultured with induced denuded conjunctival matrix and conjunctival homogenate. Immunohistochemi...
متن کاملOcular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface.
PURPOSE Autologous stem cell transplantation for total limbal stem cell deficiency is immunologically preferable, to avoid allograft rejection. This study was undertaken to investigate the possibility of a novel tissue engineering approach for ocular surface reconstruction, using autologous oral mucosal epithelial stem cells expanded ex vivo on temperature-responsive cell culture surfaces. ME...
متن کاملConcise Review: Comparison of Culture Membranes Used for Tissue Engineered Conjunctival Epithelial Equivalents
The conjunctival epithelium plays an important role in ensuring the optical clarity of the cornea by providing lubrication to maintain a smooth, refractive surface, by producing mucins critical for tear film stability and by protecting against mechanical stress and infectious agents. A large number of disorders can lead to scarring of the conjunctiva through chronic conjunctival inflammation. F...
متن کاملKeratin 13 is a more specific marker of conjunctival epithelium than keratin 19
Introduction To evaluate the expression patterns of cytokeratin (K) 12, 13, and 19 in normal epithelium of the human ocular surface to determine whether K13 could be used as a marker for conjunctival epithelium. Methods: Total RNA was isolated from the human conjunctiva and central cornea. Those transcripts that had threefolds or higher expression levels in the conjunctiva than the cornea wer...
متن کاملEffective embryoid body formation from induced pluripotent stem cells for regeneration of respiratory epithelium.
OBJECTIVES/HYPOTHESIS We have previously demonstrated the potential use of induced pluripotent stem (iPS) cells for regeneration of respiratory epithelium by culturing embryoid bodies (EBs). The aim of the present study was to determine the most effective conditions for EB formation from iPS cells for regeneration of respiratory epithelium. STUDY DESIGN Experimental study. METHODS iPS cells...
متن کامل